
Designing Event-Controlled
Continuous Processing Systems

Class 325
by

Hans Peter Jepsen, Danfoss Drives
and

 Finn Overgaard Hansen, Engineering
College of Aarhus

hans_peter_jepsen@Danfoss.com
foh@e.iha.dk

Finn Overgaard Hansen, Hans Peter Jepsen: Designing Event-Controlled Continuous Processing Systems – April 2001 2

The main ideas of this class

• To present the
two-part architectural model

as a basis for implementing
event-controlled continuous processing systems

• To outline an
object-oriented design of this architectural model

where “design patterns” have been helpful in the design

• To give
some method hints

Results of a pilot project on the OO-development of a frequency converter
in the Danish research project COT - Centre for Object Technology

Finn Overgaard Hansen, Hans Peter Jepsen: Designing Event-Controlled Continuous Processing Systems – April 2001 3

What is an “Event-Controlled
Continuous Processing System” ?

• A system
– which carries out continuous signal processing
– which reacts on events that impacts and reconfigures the

signal processing

• The signal processing
– can be carried out by software and/or hardware,
– can be distributed on multiple processors

When carried out in software or digital hardware, signal
processing is periodic or discrete-time

Finn Overgaard Hansen, Hans Peter Jepsen: Designing Event-Controlled Continuous Processing Systems – April 2001 4

Examples of Event-Controlled
Continuous Processing Systems

• Examples can be found in several fields, e.g
– Measurement instruments (e.g. flowmeters)
– Process control (e.g. frequency converters)
– Consumer electronic (e.g. CD-players)

Finn Overgaard Hansen, Hans Peter Jepsen: Designing Event-Controlled Continuous Processing Systems – April 2001 5

The frequency converter
- as an example

• A frequency converter is a device used to
control a three-phase induction motor
– so that the motor speed or motor torque matches

the need of a given application
• Often called a “drive”

– which explains the company name “Danfoss
Drives”

• VLT is the trademark for Danfoss frequency
converters

Finn Overgaard Hansen, Hans Peter Jepsen: Designing Event-Controlled Continuous Processing Systems – April 2001 6

The two-part architectural model
• The event-controlled part:

– Responsibilities: event handling,
configuration

– Selects controller in cont. proc.
part

• The continuous processing
part:
– Responsibility: continuous data

processing
– Delivers events (indications) to

event-controlled part, e.g.
”Spinning motor caught”

Event Controlled Part

Continuous Processing Part

Contains several control or
Output algorithms

Delivers
Events to

Selects
Controller

Parameterises

Finn Overgaard Hansen, Hans Peter Jepsen: Designing Event-Controlled Continuous Processing Systems – April 2001 7

Controlling a conveyer belt
- example of speed control

Goal:
– To control the speed of the conveyer belt
Constraints:
– Changes in load may not change the speed
– Changes in speed (e.g. start and stop) must

– occur in a controlled manner and
– be “smooth”

Finn Overgaard Hansen, Hans Peter Jepsen: Designing Event-Controlled Continuous Processing Systems – April 2001 8

Controlling a fan
- example of process control

Goal:
• To maintain a desired room temperature,

e.g. in an airport building
Constraints:
• Before applying power, the ventilator

must be stopped or “caught”, because
the ventilator is often “windmilling”
when the motor is not powered

Finn Overgaard Hansen, Hans Peter Jepsen: Designing Event-Controlled Continuous Processing Systems – April 2001

More to the Fan Control

• Three modes of steady-state
operation
– Coast (fan is ”wind milling”)
– Catch spinning motor
– Closed loop feedback control

• Events control shift between these
– Start command
– Spinning motor caught
– Stop command

• Demand: ”Bumpless transfer”

Coast

Catch
spinning

motor

Process
closed
loop

START Command

STOP Command

Spinning motor caught

Finn Overgaard Hansen, Hans Peter Jepsen: Designing Event-Controlled Continuous Processing Systems – April 2001 10

The working of a frequency converter

Rectifier Intermed.
Circuit

Control Circuit

MotorInverter

Enclosure

Finn Overgaard Hansen, Hans Peter Jepsen: Designing Event-Controlled Continuous Processing Systems – April 2001 11

“Architectural style:
Process Control”

• “Architectural style” - a pattern for the
architecture of a group of systems

• The “Process Control” architectural style can
be used with advantage in connection with
continuous control of a process

• The style is presented by applying it to the
frequency converter examples

• Reference: [Shaw&Garlan96]

Finn Overgaard Hansen, Hans Peter Jepsen: Designing Event-Controlled Continuous Processing Systems – April 2001 12

Ventilator control as process control

Example of “closed-loop feedback” control

Setpoint:
desired

temperature

Controlled
variable:

room temperatureProcess:
Motor + fan +

room
Controller:

VLT

Disturbances: heat production, heat loss, temperature outside, etc

Manipulated
variables:

frequency+
voltage

Feedback: measured
room temperature

Finn Overgaard Hansen, Hans Peter Jepsen: Designing Event-Controlled Continuous Processing Systems – April 2001 13

The inside of the controller
 is signal processing

Process:
Motor +

ventilator +
roomController:

VLT

Setpoint
signal

Setpoint
value

Ramp
PID

Controller

Output
Frequency

Limits

Frequency
Bypass

Resonance
Damping

Feedback
Calcualation

Feedback
signal

Setpoint
calculation

Voltage
calculation

Inverter
Control

f f f f f

U
f (Frequency)

theta

U (Voltage)
theta

update

Feedback
value

The “Process Closed Loop” controller in a VLT

Finn Overgaard Hansen, Hans Peter Jepsen: Designing Event-Controlled Continuous Processing Systems – April 2001 14

The “Speed Open Loop” controller in a VLT - also called “sensorless speed
control”. Example of a feedforward control system.

The conveyer belt again
Controlled
variable:

 speed of
conveyer

beltProcess:
Motor + load

Controller:
VLT

Input variables: motor current

Manipulated
variables:

frequency +
voltage

Setpoint:
desired
speed

Setpoint
signal

Ramp
Slip

compen-
sation

Output
Frequency

Limits

Frequency
Bypass

Resonance
Damping

Slip
estimation

I (Motor Current)

Reference
calculation

Voltage
calculation

Inverter
control

f f f f f

U
f (frequency)

theta

U (Voltage)
theta

update

Setpoint
value

slip

Finn Overgaard Hansen, Hans Peter Jepsen: Designing Event-Controlled Continuous Processing Systems – April 2001 15

Continuous signal processing -
implemented in software

Characteristics:
• Periodic instead of continuous

– normally initiated by a periodic interrupt

• Input signals are sampled
• Period length is an important system parameter
• Dataflow architecture
• Thorough treatment in control theory

– but often lacks guidelines for sensible SW-implementations

Finn Overgaard Hansen, Hans Peter Jepsen: Designing Event-Controlled Continuous Processing Systems – April 2001 16

A frequency converter
must also react to events

• Events can be:
– commands, e.g: Start, Stop, Change-Setup
– change of a “parameter” value
– new set point value received from a “process-

local-area-network”

• Sources can be
– digital terminals
– keypads
– telegrams from the “process-local-area-network”

Finn Overgaard Hansen, Hans Peter Jepsen: Designing Event-Controlled Continuous Processing Systems – April 2001 17

The treatment of events

Characteristics:
• The arrival of events is often independent of

and asynchronous to signal processing
– normally via an interrupt

• The reaction is very often determined by
finite state machines

Finn Overgaard Hansen, Hans Peter Jepsen: Designing Event-Controlled Continuous Processing Systems – April 2001 18

The event treatment
impacts signal processing

• Most signal processing “block” has
configuration-parameters
– e.g. ramp: ramp time, type (linear or S-ramp)

• Most commands and configuration-parameters
result in a change in the signal path
– Start, Stop, Change-Set-up
– Change from Speed-Open-Loop to Process-Closed-

Loop

Finn Overgaard Hansen, Hans Peter Jepsen: Designing Event-Controlled Continuous Processing Systems – April 2001 19

The signal processing part
can produce events

Examples:
• The setpoint-signal “disappears”

– the motor must be stopped or the controller
replaced

• The motor speed reaches 0 rpm
– the motor control mode must be set to “Stopped”

• Feedback outside user determined limits
– a “Warning” must be submitted

Finn Overgaard Hansen, Hans Peter Jepsen: Designing Event-Controlled Continuous Processing Systems – April 2001 20

The two-part architecture
(very simplified)

Event-Controlled
Part

Ramp

Configuration

local user
interfaceserial line

interface

Motor
stop-
ped

Motor
starting

Motor
running

Ram-
ping
down

DC
bra-
king

Freq
Limits

By-
pass

Reso-
nans
damp

Vol-
tage
calc

Inverter
Control

PID

Slip
comp.

Set-
point
calc

Feed-
back
calc

Catch
spin-
ning

motor

Setpoint
from

RS485

Analog
inputs

RS-
485

Digital
inputs

C C C C

CC

C

C

CCC

C

C C

C

C

Continuous Data
Processing Part

Finn Overgaard Hansen, Hans Peter Jepsen: Designing Event-Controlled Continuous Processing Systems – April 2001 21

Advantages of
the two-part architectural view

• The two parts of the software have different demands and
constraints
– i.e. the questions, that must be answered, and the approach is

different

• The software can be implemented so that the signal
processing path is only set up, when it needs to be
changed
– in our former approach the path was set up during every period

• The period length of the different blocks does not have to
be identical

Finn Overgaard Hansen, Hans Peter Jepsen: Designing Event-Controlled Continuous Processing Systems – April 2001 22

The applicability of the
two part architectural view

• Assumed to be applicable in many embedded
systems
– The signal processing can be distributed on

multiple CPU’s
– The signal processing “blocks” can be moved

between HW and SW

Finn Overgaard Hansen, Hans Peter Jepsen: Designing Event-Controlled Continuous Processing Systems – April 2001 23

Motor
Controlling

VLT &
Motor
supervising

ConfigurationVLT Control

Event controlled part

 Motor

VLT user

 Sensor

Continuous
processing part

Two-part model for a
frequency transformer (VLT)

Finn Overgaard Hansen, Hans Peter Jepsen: Designing Event-Controlled Continuous Processing Systems – April 2001 24

Design Patterns in the
two-part architectural model

Continuous processing part

Discrete event based part

Strategy, Filter & Pipes

Command, State

Observer

Motor Controlling VLT & Motor
supervising

VLT user

 Motor Sensor

Finn Overgaard Hansen, Hans Peter Jepsen: Designing Event-Controlled Continuous Processing Systems – April 2001 25

Structure for
Strategy Pattern

Context

ContextInterface()

Strategy

AlgorithmInterface()

ConcreteStrategyA

AlgorithmInterface()

ConcreteStrategyB

AlgorithmInterface()

ConcreteStrategyC

AlgorithmInterface()

Ref. [Gamma95]

Finn Overgaard Hansen, Hans Peter Jepsen: Designing Event-Controlled Continuous Processing Systems – April 2001 26

Class diagram showing
realisation of Strategy Pattern

OutputController {abstract}MotorOutputGenerator

setActiveController()
generateMotorOutput()

1

activeOutputController

SpeedOpenLoopController

generateF(): Frequency
generateV(): Voltage

ProcessClosedLoopController

generateF(): Frequency
generateV(): Voltage

periodic
activation

...

generateOutput()
generateF()
generateV()
activate()
deactivate()

Strategy
Pattern

Context Strategy

PwmAsic

Finn Overgaard Hansen, Hans Peter Jepsen: Designing Event-Controlled Continuous Processing Systems – April 2001 27

C++ code example for
‘generateMotorOutput()’

OutputController *theActiveOutputController;

MotorOutputGenerator::generateMotorOutput()
{
 theActiveOutputController->generateOutput();
}

OutputController {abstract}MotorOutputGenerator

setActiveController()
generateMotorOutput()

1

activeOutputController generateOutput()
generateF(): Frequency
generateV(): Voltage

Finn Overgaard Hansen, Hans Peter Jepsen: Designing Event-Controlled Continuous Processing Systems – April 2001 28

OutputController::generateOutput()
{
 frequecy= generateF(); // pure virtual function
 voltage= generateV(); // pure virtual function
 thePwmAsic->output(frequency,voltage);
}

OutputController {abstract}

+ generateOutput()
- generateF(): Frequency
- generateV(): Voltage

generateOutput() is a Template Method according to [Gamma95]

PwmAsic

Output(Frequency,Voltage)

C++ code example for
‘generateOutput()’

Finn Overgaard Hansen, Hans Peter Jepsen: Designing Event-Controlled Continuous Processing Systems – April 2001 29

C++ code example for
‘setActiveController()’

MotorOutputGenerator::setActiveController
(OutputController: newController)

{
 controllerInfo= theActiveOutputController->deactivate();
 theActiveOutputController= newController;
 theActiveOutputController->activate(controllerInfo);
}

OutputController {abstract}MotorOutputGenerator

setActiveController()
generateMotorOutput()

1

activeOutputController activate()
deactivate()
generateOutput()

Finn Overgaard Hansen, Hans Peter Jepsen: Designing Event-Controlled Continuous Processing Systems – April 2001 30

Speed Open loop:

Process Closed Loop:

Block diagram for two different
application modes

Setpoint
signal

Ramp
Slip

compen-
sation

Output
Frequency

Limits

Frequency
Bypass

Resonance
Damping

Slip
estimation

I (Motor Current)

Reference
calculation

Voltage
calculation

Inverter
control

f f f f f

U
f (frequency)

theta

U (Voltage)
theta

update

Setpoint
value

slip

Setpoint
signal

Setpoint
value

Ramp
PID

Controller

Output
Frequency

Limits

Frequency
Bypass

Resonance
Damping

Feedback
Calcualation

Feedback
signal

Setpoint
calculation

Voltage
calculation

Inverter
Control

f f f f f

U
f (Frequency)

theta

U (Voltage)
theta

update

Feedback
value

Finn Overgaard Hansen, Hans Peter Jepsen: Designing Event-Controlled Continuous Processing Systems – April 2001 31

Class

Responsibility Collaborators

Class

Responsibility Collaborators

Filter

Get input
Perform
function
Set output

Pipe

Pipe

Transfer data
Buffer data
Sync. filters

Data Source
Data Sink
Filter

Class

Responsibility Collaborators

Deliver input to
processing
pipeline

Pipe

Data Source Class

Responsibility Collaborators

Consumes output Pipe

Data Sink

Pipes and Filters Pattern classes

Finn Overgaard Hansen, Hans Peter Jepsen: Designing Event-Controlled Continuous Processing Systems – April 2001 32

Object diagram for
SpeedOpenLoopController

:ResonanceDamperFilter

:BypassFilter

:FreqLimiterFilter

:RampFilter

input frequency

output
frequency

:SpeedOpen
LoopController

f=output(f)

f=output(f)

f=output(f)

f=output(f)

:SlipFilter f=output(f)

Finn Overgaard Hansen, Hans Peter Jepsen: Designing Event-Controlled Continuous Processing Systems – April 2001 33

Class diagram for
Pipes and Filter pattern

ControllerComponent {abstract}

Output(Frequency): Frequency

0..*

RampFilterFreq
LimiterFilter

Bypass
Filter

Pipes and
filter pattern

Filter

OutputController {abstract}

generateOutput()

generateF(): Frequency
generateV(): Voltage

SpeedOpenLoop
Controller

ProcessClosedLoop
Controller

Source, Sink, Pipe

Slip
Filter

...

generateF(): Frequency
generateV(): Voltage

...

generateF(): Frequency
generateV(): Voltage

Finn Overgaard Hansen, Hans Peter Jepsen: Designing Event-Controlled Continuous Processing Systems – April 2001 34

C++ code example
for ‘generateF()’

Frequency SpeedOpenLoopController::generateF()
{

…..
frequency = theSlipFilter->output(frequency);
frequency = theBypassFilter->output(frequency);
frequency = theFreqLimiterFilter->output(frequency);
frequency = theRampFilter->output(frequency);
frequency = theResDamperFilter->output(frequency);
return frequency;

}

SpeedOpenLoop
Controller

generateF(): Frequency

Finn Overgaard Hansen, Hans Peter Jepsen: Designing Event-Controlled Continuous Processing Systems – April 2001 35

:MotorOutputGenerator
generateMotorOutput

1. generateOutput

:SpeedOpenLoopController 1.1 generateF

:SlipFilter

1.1.1 output

:last filter object

:StopController

active later on

1.2 generateV

1.1.n output

1.3 output(frequency,voltage) :PwmAscic

Object ”collaboration” diagram
for ‘generateMotorOutput’

Finn Overgaard Hansen, Hans Peter Jepsen: Designing Event-Controlled Continuous Processing Systems – April 2001 36

ConfigurationVLT Control

Event based part

User
Interface

VLT user

Outline of the discrete
event based part

Finn Overgaard Hansen, Hans Peter Jepsen: Designing Event-Controlled Continuous Processing Systems – April 2001 37

Configuration of
motor output generator

MotorOutputGenerator

setActiveController()
generateMotorOutput()

OutputController {abstract}

generateOutput()

activeOutputController

1

MotorManager
1

configures

1..*

implemented
by a state machine

runController,
stopController,
startController,
appModeController

continuous partdiscrete part

SpeedOpen
LoopController

PwmAsic

Finn Overgaard Hansen, Hans Peter Jepsen: Designing Event-Controlled Continuous Processing Systems – April 2001 38

Initialized in another part of the program:
runController= theConfiguration->AppModeController())

MotorStopped
entry/setActiveController(stopController)

MotorRunning
entry/setActiveController(runController)

MotorStarting

start/
setActiveController(startController)

running

Part of the state machine for
the MotorManger class

Finn Overgaard Hansen, Hans Peter Jepsen: Designing Event-Controlled Continuous Processing Systems – April 2001 39

Outline of Command + State pattern

MotorManager
MotorState11

actualState

...

handleCommand(Command *pC)

1. handleCommand(Command *pC)
 { pC->execute(actualState); }

2. StartCommand::execute(MotorState *pS)
 { pS->start(); }

3. MotorStopped::start()
 {->SetActiveController(startController); }

MotorStopped MotorStarting MotorRunning

Finn Overgaard Hansen, Hans Peter Jepsen: Designing Event-Controlled Continuous Processing Systems – April 2001 40

Two types of VLT Use Cases

VLT user

Motor

Control VLT

Motor
Controlling

Change VLT
configuration

parameters

Sensor

Motor
Protection

Actor initiated
Use Cases (discrete)

System initiated
Use Cases

(continuous)

Finn Overgaard Hansen, Hans Peter Jepsen: Designing Event-Controlled Continuous Processing Systems – April 2001 41

Generalised two-part architectural model

Processing Monitoring

ConfigurationControlling

Event controlled part

 Actuator

Controlling
User

Sensor

Continuous
processing part

INPUT

OUTPUT

Supervising
User

Finn Overgaard Hansen, Hans Peter Jepsen: Designing Event-Controlled Continuous Processing Systems – April 2001 42

Task model example

:Motor
Control Task

:VltMotor
supervising Task

:Configuration

:VLTControlTask
Event
controlled part

Continuous
processing part

<<monitor>>

Finn Overgaard Hansen, Hans Peter Jepsen: Designing Event-Controlled Continuous Processing Systems – April 2001 43

Experiences with Design Patterns

• Design patterns have been a very useful
design tool

• The continuous part can be implemented
with the Strategy pattern working in concert
with the Pipes and Filter pattern

• The discrete part can be implemented with
the State pattern working in concert with the
Command pattern

Finn Overgaard Hansen, Hans Peter Jepsen: Designing Event-Controlled Continuous Processing Systems – April 2001 44

Other OO experiences

• Extensive use of abstract classes and
polymorph operations in the design
– the continuous part is fast
– easy to extend with extension based on

subclasses

• Smaller state machines than in the previous
SA/SD-RT (Ward&Mellor) based design

Finn Overgaard Hansen, Hans Peter Jepsen: Designing Event-Controlled Continuous Processing Systems – April 2001 45

Conclusion

• Successful use of OO technology in an
embedded system, where the use of design
patterns has resulted in a flexible object model

• The two-part architectural model has been a
valuable design tool - and is useful as a general
design principle

• A framework has been build based on OO
techniques (i.e. design patterns)

Finn Overgaard Hansen, Hans Peter Jepsen: Designing Event-Controlled Continuous Processing Systems – April 2001 46

References

[Bushmann96]: A System of Patterns: Patterns Oriented Software Architecture

[COT]: The Centre for Object Technology (COT)
(http://www.cit.dk/COT/)

[Gamma95]: Design Patterns: Elements of Reusable Software

[Jacobson92]: Object-Oriented Software Engineering – A Use Case Driven
Approach

[Shaw95]: Comparing Architectural Design Styles

[Shaw&Garlan96]: Software Architecture: Perspective of an Emerging Discipline

[UML97]: Unified Modelling Language (UML), www.omg.org

