Designing Event-Controlled
Continuous Processing Systems
Class 325

by
Hans Peter Jepsen, Danfoss Drives
and

Finn Overgaard Hansen, Engineering
College of Aarhus

hans peter | epsen@anfo0ss. com
foh@. i ha. dk

The main ideas of this class

e To present the
two-part architectural model
as abasis for implementing
event-controlled continuous processing systems

e Tooutlinean

object-oriented design of this architectural model
where “design patterns’ have been helpful in the design

e Togive
some method hints

Results of apilot project on the OO-devel opment of afrequency converter
In the Danish research project COT - Centre for Object Technology

Finn Overgaard Hansen, Hans Peter Jepsen: Designing Event-Controlled Continuous Processing Systems — April 2001

What Is an “ Event-Controlled
Continuous Processing System” 7

e A system
— which carries out continuous signal processing
— which reacts on events that impacts and reconfigures the
signal processing
 The signal processing
— can be carried out by software and/or hardware,
— can be distributed on multiple processors

When carried out in software or digital hardware, signal
processing is periodic or discrete-time

Finn Overgaard Hansen, Hans Peter Jepsen: Designing Event-Controlled Continuous Processing Systems — April 2001

Examples of Event-Controlled
Continuous Processing Systems

o Examples can be found in several fields, e.g
— Measurement instruments (e.g. flowmeters)
— Process control (e.g. frequency converters)
— Consumer electronic (e.g. CD-players)

Finn Overgaard Hansen, Hans Peter Jepsen: Designing Event-Controlled Continuous Processing Systems — April 2001

The frequency converter
- as an example

A freguency converter iIsadevice used to
control athree-phase induction motor

— so that the motor speed or motor torque matches
the need of a given application

e Often caled a“drive’

— which explains the company name “Danfoss
Drives’

o VLTa Isthe trademark for Danfoss frequency
converters

Finn Overgaard Hansen, Hans Peter Jepsen: Designing Event-Controlled Continuous Processing Systems — April 2001 5

The two-part architectural model

Event Controlled Part

Delivers
Events to

v

Selects

Controller

v

Parameterises

Continuous Processing Part

Contains several control or

Output algorithms

e The event-controlled part:
— Responsibilities: event handling,
configuration
— Selects controller in cont. proc.
part
* The continuous processing
part.
— Responsibility: continuous data
processing
— Délivers events (indications) to

event-controlled part, e.g.
” Spinning motor caught”

Finn Overgaard Hansen, Hans Peter Jepsen: Designing Event-Controlled Continuous Processing Systems — April 2001 6

Controlling a conveyer belt
- exampl e of speed control

S

)

Goal:
— To control the speed of the conveyer belt

Constraints:
— Changes in load may not change the speed

— Changes in speed (e.g. start and stop) must
— occur in acontrolled manner and
— be “smooth”

Finn Overgaard Hansen, Hans Peter Jepsen: Designing Event-Controlled Continuous Processing Systems — April 2001

Controlling afan
- example of process control

Cold air > %

Goal:
 To maintain adesired room temperature
e.g. inan airport building ; t

emperaiure

Constraints; transmitter

« Before applying power, the ventilator
must be stopped or “caught”, because
the ventilator is often “windmilling”
when the motor is not powered

Finn Overgaard Hansen, Hans Peter Jepsen: Designing Event-Controlled Continuous Processing Systems — April 2001 8

More to the Fan Control

e Three modes of steady-state
operation
— Coast (fanis”wind milling”)
— Catch spinning motor
— Closed loop feedback control
e Events control shift between these
— Start command
— Spinning motor caught
— Stop command

e Demand: "Bumpless transfer”

START Command

Catch
spinning
motor

closed
loop

Spinning motor caught

Finn Overgaard Hansen, Hans Peter Jepsen: Designing Event-Controlled Continuous Processing Systems — April 2001

The working of afreguency converter

YYY

P

Al . > Intermed. [
>~ 0 > S
~ ST Rectifier Circuit Inverter
A A A
| Y Y
Control Circuit
A
Enclosure |
|
Y

B

/1

}//_\
*bi_

o) Time sequence of the control signals for three inverter phasss

Finn Overgaard Hansen, Hans Peter Jepsen: Designing Event-Controlled Continuous Processing Systems — April 2001 10

“Architectural style:
Process Control”

“Architectural style” - a pattern for the
architecture of agroup of systems

he “ Process Control” architectural style can
be used with advantage in connection with
continuous control of a process

The style 1s presented by applying it to the
frequency converter examples

Reference: [Shawé& Garlan96]

Finn Overgaard Hansen, Hans Peter Jepsen: Designing Event-Controlled Continuous Processing Systems — April 2001 11

Ventilator control as process control

Disturbances:heat production, heat loss, temperature outside, etc

|

Controlled
_ Manipulated Process: v;irlable: t
Setp_omt: variables: Votor 1 fa.n . room em}pera ure
desired frequency+
temperature Controller: voltage room
VLTa

Feedback:measured
room temperature

Example of “closed-loop feedback” control

Finn Overgaard Hansen, Hans Peter Jepsen: Designing Event-Controlled Continuous Processing Systems — April 2001 12

IS signal processing

Controller:
VLTa

Process:
Motor +
ventilator +
room

The inside of the controller

—

N

u
Setpoint Setpoint outout thet' | (Frgquency)
Sign_al’ Setpoint |value _ PID Frequency Freu p:nc _f’ Ram .| Resonance Voltage 5 Inverter
calculation Controller Bypass quency P Damping calculation Control
Limits N U (Vpltage)
theta
update
Feedback Feedback
value Feedback signal
Calcualation
1 1 : A
The “Process Closed Loop” controller inaVLT?
Finn Overgaard Hansen, Hans Peter Jepsen: Designing Event-Controlled Continuous Processing Systems — April 2001 13

The conveyer belt again

Input variables: motor current

Controlled
variable:
speed of

Manipulated conveyer
Setpoint: variables: Process: belt
desired frequency + Motor + load
speed Controller: voltage
VLTa

—

N

U
Setpoint Setpoint]) g f (frgquency)
signal | Reference | value Slip Frequency Output Resonance Voltage thet Inverter
) » compen- | Frequency Ramp f - —L,| -
calculation : > Bypass S » Damping calculation control
sation Limits
> U (Voltage)
theta
update
slip Slip I (Motor Current)
estimation

The “Speed Open Loop” controllerinaVLT? - also caled “sensorless speed
control”. Example of afeedforward control system.

Finn Overgaard Hansen, Hans Peter Jepsen: Designing Event-Controlled Continuous Processing Systems — April 2001 14

Continuous signal processing -
Implemented In software

Characteristics:
e Periodic instead of continuous
— normally initiated by a periodic interrupt
* |nput signals are sampled
e Period length is an important system parameter
o Dataflow architecture

Thorough treatment in control theory
— but often lacks guidelines for sensible SW-implementations

Finn Overgaard Hansen, Hans Peter Jepsen: Designing Event-Controlled Continuous Processing Systems — April 2001 15

A freguency converter
must also react to events

e Eventscan be;
— commands, e.g: Start, Stop, Change-Setup
— change of a“parameter” value

— new set point value received from a* process-
local -area-network”

e Sources can be
— digital terminals
— keypads
— telegrams from the “ process-local -area-network”

Finn Overgaard Hansen, Hans Peter Jepsen: Designing Event-Controlled Continuous Processing Systems — April 2001 16

The treatment of events

Characteristics:

e Thearriva of eventsis often independent of
and asynchronous to signal processing
— normally viaan interrupt

* Thereaction isvery often determined by
finite state machines

Finn Overgaard Hansen, Hans Peter Jepsen: Designing Event-Controlled Continuous Processing Systems — April 2001 17

The event treatment
Impacts signal processing

 Most signal processing “block” has
configuration-parameters
— e.g. ramp: ramp time, type (linear or S-ramp)
 Most commands and configuration-parameters
result in achange in the signal path
— Start, Stop, Change-Set-up

— Change from Speed-Open-L oop to Process-Closed-
L oop

Finn Overgaard Hansen, Hans Peter Jepsen: Designing Event-Controlled Continuous Processing Systems — April 2001 18

The signal processing part
can produce events

Examples.
e The setpoint-signal “disappears’

— the motor must be stopped or the controller
replaced

e The motor speed reaches O rpm

— the motor control mode must be set to “ Stopped”

* Feedback outside user determined limits
—a“Warning” must be submitted

Finn Overgaard Hansen, Hans Peter Jepsen: Designing Event-Controlled Continuous Processing Systems — April 2001

19

The two-part architecture
(very ssmplified)

RS-
485 serial line local user |
—b . interface
interface
. 3 *
Digital C 4 i y C
inputs y
C « Configuration
i ‘ Event-Controlled
c Part
"""""""""""""""""""""""""""""""" - Continuous Data
C C - .
v : : Processing Part
Setpoint v
from
Set- Reso-
RS485 C point By- F.re.q Rampp| nans - Inverter
: pass Limits Control
> - calc damp
— 0)0 A A A A A
Analog Feed- f : ' :
_inputs - ?:?I:cl:(C C C C C
i
C

Finn Overgaard Hansen, Hans Peter Jepsen: Designing Event-Controlled Continuous Processing Systems — April 2001 20

Advantages of
the two-part architectural view

* Thetwo parts of the software have different demands and
constraints

— 1.e. the questions, that must be answered, and the approach is
different

* The software can be implemented so that the signal

processing path is only set up, when it needs to be
changed

— 1n our former approach the path was set up during every period

e The period length of the different blocks does not have to
be identical

Finn Overgaard Hansen, Hans Peter Jepsen: Designing Event-Controlled Continuous Processing Systems — April 2001 21

The applicability of the
two part architectural view

e Assumed to be applicable in many embedded
systems

— The signal processing can be distributed on
multiple CPU’s

— The signal processing “blocks’ can be moved
between HW and SW

Finn Overgaard Hansen, Hans Peter Jepsen: Designing Event-Controlled Continuous Processing Systems — April 2001 22

Two-part mode! for a
frequency transformer (VLT)

Event controlled part

/- \ VLT Control f-—-= > Configuration

N N

Continuous
processing part

| N
v
— M otor VLT & —
Controlling Motor

Sensor supervising Motor

|
|
|
) |
|
|
I

Finn Overgaard Hansen, Hans Peter Jepsen: Designing Event-Controlled Continuous Processing Systems — April 2001 23

Design Patterns in the
two-part architectural model

Discrete event based part
;< >: - Command, State
VLT user
A
v
% Motor Controlling VLT & Motor %
__ supervising [
Strategy, Filter & Pipes Observer
Sensor _) Motor
Continuous processing part

Finn Overgaard Hansen, Hans Peter Jepsen: Designing Event-Controlled Continuous Processing Systems — April 2001 24

Structure for
Strategy Pattern

Context <> > Strategy

Contextinterface() Algorithminterface()

/\

ConcreteStrategyA ConcreteStrategyB ConcreteStrategyC
Algorithminterface() Algorithminterface() Algorithminterface()
Ref. [Gammag5]

Finn Overgaard Hansen, Hans Peter Jepsen: Designing Event-Controlled Continuous Processing Systems — April 2001 25

Class diagram showing
realisation of Strategy Pattern

— — oy

.~ Strategy’ \

-7~ Pattern. <
~ - ~ N = ™ N\
Context_ - ~ Strategy
A~ A
MotorOutputGenerator 1| OutputController {abstract}
PN ~
setActiveController() e activeOutputControIIer/ generateOutput()
enerateMotorOutput generateF() - .

fg Put0 generateV/() PwmAsic

/ activate()

- deactivate()
periodic
activation

I I

SpeedOpenLoopController ProcessClosedLoopController

generateH): Frequency generateH): Frequency
generateV(): Voltage generateV(): Voltage

Finn Overgaard Hansen, Hans Peter Jepsen: Designing Event-Controlled Continuous Processing Systems — April 2001 26

C++ code example for
‘generateM otorOutput()’

MotorOutputGenerator

1

OutputController {abstract}

setActiveController()
generateMotorOutput()

activeOutputController

generateOutput()
generateH): Frequency
generateV(): Voltage

OutputController *theActiveOutputController;

MotorOutputGenerator::.generateMotorOutput()

{

theActiveOutputController->generateOutput();

}

Finn Overgaard Hansen, Hans Peter Jepsen: Designing Event-Controlled Continuous Processing Systems — April 2001

27

C++ code example for
‘generateOutput()’

OutputController {abstract}

+ generateOutput()
- generateF(): Frequency
- generateV(): Voltage

PwmAsSic

OutputController::generateOutput()

{

frequecy= generateF();
voltage= generateV();

>

Output(Frequency,Voltage)

// pure virtual function
// pure virtual function
thePwmAsic->output(frequency,voltage);

generateOutput() is a Template Method according to [Gamma95]

Finn Overgaard Hansen, Hans Peter Jepsen: Designing Event-Controlled Continuous Processing Systems — April 2001

28

C++ code example for
‘setActiveController()’

MotorOutputGenerator

1

OutputController {abstract}

setActiveController()
generateMotorOutput()

activeOutputController

MotorOutputGenerator::setActiveController

{

(OutputController: newController)

activate()

deactivate()
generateOutput()

controllerinfo= theActiveOutputController->deactivate();
theActiveOutputController= newController;

theActiveOutputController->activate(controllerinfo);

Finn Overgaard Hansen, Hans Peter Jepsen: Designing Event-Controlled Continuous Processing Systems — April 2001

29

Block diagram for two different
plication modes

Speed Open loop:

U

Setpoint Setpoint]) i f (frgquency)

signal | Reference | value corSn“pen- § Frequency | ; Frguhpeur:c i Ram ¢ | Resonance Voltage thet Inverter

calculation i p » Bypass [quency P » Damping L> calculation control
sation Limits U (Voltage)
theta
update
slip Slip I (Motor Current)
estimation

U

Setpoint ’ f (Frgguency)

signal Setpoint letgglnt PID f Frequency f Output f f | Resonance | f Voltage thetg Inverter

— ; » —> » Frequency > Ramp —> ; — ;
calculation Controller Bypass e Damping calculation Control
Limits . U (Vgltage)
theta
update
A
Feedback Feedback
value Feedback P signal

Calcualation

Finn Overgaard Hansen, Hans Peter Jepsen: Designing Event-Controlled Continuous Processing Systems — April 2001 30

Pipes and Filters Pattern classes

Class Filter Class Pipe

Responsibility Collaborators Responsibility Collaborators
Get input B Transfer data Data Source
Perform 'Pe Buffer data Data Sink
function Sync. filters Filter
Set output

Class Data Source Class Data Sink

Responsibility Collaborators Responsibility Collaborators
Deliver input to Pipe :
orocessing Consumes output| Pipe
pipeline

Finn Overgaard Hansen, Hans Peter Jepsen: Designing Event-Controlled Continuous Processing Systems — April 2001

31

ODbject diagram for
SpeedOpenL oopController

:SpeedOpen
L oopController

L :SlipFilter

f=output(f)

' | f=output(f)

.BypasskFilter
input frequency J___ f=output(f)

‘FreqLimiterFilter
Vv f=output(f)

:RampkFilter
N f=output(f) output
_ frequency
:ResonanceDamperFilter —»

Finn Overgaard Hansen, Hans Peter Jepsen: Designing Event-Controlled Continuous Processing Systems — April 2001 32

Class diagram for
Pipes and Filter pattern

-_—

P

—

~ . ~
/" Pipesand 7,
~ filter patterp”
// T \\
Source, Sink, Pipe - “« Filter
ad 4
OutputController {abstract} 0.* ControllerComponent {abstract}
<> =
generateOutput() Output(Frequency): Frequency
generateF(): Frequency AN
generateV(): Voltage I I I
Slip Bypass | | Freq RampFilter
Filter Filter LimiterFilter

ProcessClosedLoop SpeedOpenLoop

Controller Controller

generateR(): Frequency| | generateR(): Frequency

generateV(): Voltage generateV(): Voltage

Finn Overgaard Hansen, Hans Peter Jepsen: Designing Event-Controlled Continuous Processing Systems — April 2001

33

C++ code example
for ‘ generater()’

SpeedOpenLoop
Controller

generateF(): Frequency

Frequency SpeedOpenLoopController::generateF()

frequency = theSlipFilter->output(frequency);
frequency = theBypassFilter->output(frequency);
frequency = theFregLimiterFilter->output(frequency);
frequency = theRampFilter->output(frequency);
frequency = theResDamperFilter->output(frequency);
return frequency;

}

Finn Overgaard Hansen, Hans Peter Jepsen: Designing Event-Controlled Continuous Processing Systems — April 2001

ODbject ” collaboration” diagram
for ‘ generateM otorOutput’

active later on

generateMotorOutput LT T T T T
' :MotorQutputGenerator |- — — — — — — — ——! :StopController !
e e o = === — |
¢ 1. generateOutput
1.2 generateV :
, :SpeedOpenLoopController < 1.1 generateF $

—>
1.3 output(frequency,voltagel ‘PWmASGic

1.1.1 output ¢

1.1}n output

.SlipFilter ! lagt filter object

Finn Overgaard Hansen, Hans Peter Jepsen: Designing Event-Controlled Continuous Processing Systems — April 2001 35

Outline of the discrete
event based part

Event based part

X =

| nterface
VLT user

VLT Control Configuration

Finn Overgaard Hansen, Hans Peter Jepsen: Designing Event-Controlled Continuous Processing Systems — April 2001 36

Configuration of
motor output generator

discrete part continuous part
MotorManager configures 5 MotorOutputGenerator activeOutputController
: 1| setActiveController() -
implemented generateMotorOutput()

by a state machine

1
A4
1..*| OutputController {abstract}
> PwmAsic
runController, generateOutput()
stopController, 4&
startController, | | | |
appModeController SpeedOpen
LoopController

Finn Overgaard Hansen, Hans Peter Jepsen: Designing Event-Controlled Continuous Processing Systems — April 2001 37

Part of the state machine for
the MotorManger class

° M otorStopped
entry/setActiveController(stopController)
start/
setActiveController(stagrtController)
: W running | MotorRunning
[M otortart ngJ ’[entry/setActiveControl ler(runController)

Initialized in another part of the program:
runController= theConfiguration->AppModeController())

Finn Overgaard Hansen, Hans Peter Jepsen: Designing Event-Controlled Continuous Processing Systems — April 2001 38

Outline of Command + State pattern

MotorManager

1

handleCommand(Command *pC)

1. handIeCom'mand(Command *pC)
{ pC->execute(actualState); }

>

MotorState

actualState

MotorStopped

MotorStarting

MotorRunning

{ pS->start(); }

2. StartCommand::execute(MotorState *pS)

3. MotorStopped::start()

{->SetActiveController(startController); }

Finn Overgaard Hansen, Hans Peter Jepsen: Designing Event-Controlled Continuous Processing Systems — April 2001

39

Two typesof VLT Use Cases

I

\

VLT user

System initiated
Use Cases
(continuous)

Change VLT
configuration
parameters

M otor

Actor initiated
Use Cases (discrete)

Controlling

>< M otor

M otor
Protection

Sensor

Finn Overgaard Hansen, Hans Peter Jepsen: Designing Event-Controlled Continuous Processing Systems — April 2001

Generalised two-part architectural model

Event controlled part

Controlling Controlling [> Configuration
User
—< ? OUTPUT
N |
| \ I
INPUT Continuous i . i
processing part | N |
i N -
v Supervising
| User
Processing Monitoring Q
Sensor A
Actuator

Finn Overgaard Hansen, Hans Peter Jepsen: Designing Event-Controlled Continuous Processing Systems — April 2001 41

Task model example

Event

VL TControlTask
controlled part

<<monitor>>
:Confiqur ation

A

Continuous ‘M otor VItM otor
processing part Control Task supervisng Task

Finn Overgaard Hansen, Hans Peter Jepsen: Designing Event-Controlled Continuous Processing Systems — April 2001 42

Experiences with Design Patterns

* Design patterns have been avery useful
design tool

* The continuous part can be implemented
with the Srategy pattern working in concert
with the Pipes and Filter pattern

* The discrete part can be implemented with
the Sate pattern working in concert with the

Command pattern

Finn Overgaard Hansen, Hans Peter Jepsen: Designing Event-Controlled Continuous Processing Systems — April 2001 43

Other OO experiences

o Extensive use of abstract classes and
polymorph operations in the design
— the continuous part is fast
— easy to extend with extension based on
subclasses

e Smaller state machinesthan in the previous
SA/SD-RT (Ward& Mellor) based design

Finn Overgaard Hansen, Hans Peter Jepsen: Designing Event-Controlled Continuous Processing Systems — April 2001

Conclusion

» Successful use of OO technology in an
embedded system, where the use of design
patterns has resulted in aflexible object model

e Thetwo-part architectural model has been a
valuable design tool - and Is useful as a general
design principle

« A framework has been build based on OO
techniques (i.e. design patterns)

Finn Overgaard Hansen, Hans Peter Jepsen: Designing Event-Controlled Continuous Processing Systems — April 2001 45

References

[Bushmann96]: A System of Patterns. Patterns Oriented Software Architecture

[COT]: The Centre for Object Technology (COT)
(http://www.cit.dk/COT/)

[Gamma95]. Design Patterns. Elements of Reusable Software

[Jacobson92]: Object-Oriented Software Engineering — A Use Case Driven
Approach

[Shaw95]. Comparing Architectural Design Styles

[Shaw& Garlan96]: Software Architecture: Perspective of an Emerging Discipline

[UML97]: Unified Modelling Language (UML), www.omg.org

Finn Overgaard Hansen, Hans Peter Jepsen: Designing Event-Controlled Continuous Processing Systems — April 2001

